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SUPPLEMENTARY METHODS 
 
fMRI Data Acquisition. Imaging data were collected using a 32-channel phased-array head coil 

with a 3T Siemens Prisma fMRI Scanner at the Harvard Center for Brain Sciences. High-

resolution T1-weighted anatomical scans were acquired using a 3D MPRAGE protocol (176 

sagittal slices; FoV = 256 mm; 1x1x1 mm voxel resolution; gap thickness = 0 mm; TR = 2530 

ms; TE = 1.69 ms; flip angle = 7 degrees). Blood oxygenation level-dependent (BOLD) contrast 

functional scans were obtained using a gradient echo-planar T2* sequence (84 oblique axial 

slices acquired at a 25° angle off of the anterior commissure-posterior commissure line; FoV = 

204 mm; 1.5x1.5x1.5 mm voxel resolution; gap thickness = 0 mm, TR = 2000 ms; TE = 30 ms; 

flip angle = 80 degrees; multi-band acceleration factor = 3). 

fMRI Analysis and Pre-Processing. Functional data were pre-processed using Brain Voyager 

QX software version 2.8.4 (Brain Innovation, Maastricht, Netherlands). Functional preprocessing 

included slice scan-time correction, 3D motion correction, linear trend removal, temporal high-

pass filtering (0.008 Hz cutoff), spatial smoothing (4 mm FWHM Kernel), and a transformation to 

Talairach coordinates. Whole-brain random-effect group GLMs were fit separately for each 

video set, as well as for both odd and even runs of each video set. In all cases, the design 

matrix included regressors for each condition block, specified as a square-wave regressor for 

each 5-second stimulus presentation time, convolved with a 2-gamma function that 

approximated the idealized hemodynamic response. Across these GLMs, the average variance 

inflation factor across conditions of the design matrix was 1.03 (where a value greater than 5 is 

considered problematic), and the average efficiency was 0.21. Voxel time series were 

normalized within a run using a z-transform and corrected for temporal autocorrelations during 

GLM fitting. Beta weights extracted from these group-level random-effects GLMs were averaged 

across subjects for each voxel, and then taken as the primary measure of interest for all 

subsequent analyses. Each subject’s cortical surface was reconstructed from the high-

resolution T1-weighted anatomical scan using Freesurfer software, and one subject was 

selected as the display brain for the group data. 

 

fMRI Experiment Design Details. Participants completed 8 functional runs of the experiment. 

Each video set was presented in four separate 6.2-minute runs. During each run, participants 

saw all 60 videos from one of the two sets. Each 2.5-second video was presented twice in a 

row, fading in and out of a uniform gray background over a 500-millisecond time window at the 

onset and offset of each presentation to prevent visually-jarring transients between video 

presentations. Thus, each video was presented in a 5-second block. In addition, four 15-second 

blocks of fixation were interspersed throughout the run, placed so that no fixation blocks 

occurred within five blocks of each other or the beginning or end of the run. In addition, fixation 

periods occurred for 4 seconds at the beginning and 10 seconds at the end of the run. Across 

runs, the order of the video blocks was randomized. Video stimuli were presented at 512 x 512 

px on a 41.5 x 41.5 cm screen, subtending approximately 9 x 9 degrees of visual angle in the 

participant’s visual field. To ensure that participants remained alert throughout the experiment, 

they pressed a button whenever a red frame appeared around a video during one of the two 

video repetitions within a condition block. Such probes occurred 15 times per run and were 

counterbalanced so that each condition was probed once across all runs. All experimental 

protocols were presented using the Psychophysics Toolbox version 3 and MATLAB version 

R2016a.  
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Orthogonalizing the Feature Spaces. To facilitate our interpretation of each feature’s 

contribution to the encoding models, the body parts and action target feature spaces were 

submitted to Principle Components Analysis (PCA), which extracts orthogonal components from 

the original feature space. Doing so enables weights to be fit over the body-part synergies 

rather than the body parts themselves – otherwise, with some kinds of regularized regression, 

highly correlated features (such as the thumb and index finger) might be assigned different and 

more variable weights, leading to the mistaken interpretation that a given region was tuned to 

the thumb but not the index finger.  

However, it is important to note that this step is not necessary when using encoding modeling 

with ridge regularization, which handles issues of correlated feature predictors directly. In fact, 

doing so may hurt model prediction accuracy to some degree. We examined this possibility in 

the current data, and found that our step of orthogonalizing these predictors through PCA did 

not dramatically change the model’s performance (average change in cross-validated r vs. a 

model fit on the original 25 features = 0.02, sd = 0.11 for set 1; average change = 0.01, sd = 

0.11 for set 2). But, note that removing the PCA step may be a more optimal procedure for 

maximizing predictive accuracy in general.  

PCA was performed separately on each feature space. The number of principle components 

(PCs) extracted was based on the number that cumulatively accounted for 95% of the variance 

in the feature ratings. This resulted in 7 body part PCs and 5 action target PCs (Supplementary 

Figure 1). The encoding modeling analysis was then performed over these 12 PC features. We 

followed a similar approach to fit a model based on the body parts and targets that were visible 

in the videos. These ratings were averaged across raters for each video, then binarized by 

rounding the average rating to either 0 or 1. PCA was then performed separately on visibility 

ratings for body parts and action targets. Based on the number of PCs that cumulatively 

accounted for 95% of the variance in the feature ratings, 11 body part visibility PCs and 4 target 

visibility PCs were extracted. The encoding modeling analysis was then performed over these 

15 PC features.  

 
Single-Subject Analyses. We also performed the encoding modeling and data-driven 
clustering analyses in each individual subject’s data. Because subjects vary in the extent of their 
reliable coverage, making comparisons across subjects challenging, encoding modeling 
analyses were done in the same voxels as in the group (cross-sets reliability > 0.30 in the group 
data). Similarly, voxels were clustered into five networks using the voxels that were reliable and 
well-predicted (rCV > 0 with fdr-corrected q < 0.01) in the group data. To make it possible to 
compare the clustering results across subjects, in Supplementary Figure 4 the clusters are 
displayed on individual subjects’ brains using a common colormap: clusters with a similar tuning 
profile across subjects are displayed in similar colors. This colormap was made by entering all 
subject’s tuning profiles for all networks into a multi-dimensional scaling (MDS) analysis. The 
first three dimensions of the MDS solution were then extracted and used as R, G, and B values 
for each cluster’s display color. Because some subjects did not have reliable neural responses 
in all of these regions, their results in Supplementary Figure 2 and Supplementary Figure 4 
are ordered by the number of reliable voxels found in each subject’s brain when reliable voxels 
were defined individually for each subject (cross-sets reliability > 0.30 in each subject’s data). 
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Hierarchical Clustering. To validate our finding (based on k-means clustering) that the division 

between regions tuned to social and non-social features of actions emerges first, we also 

conducted a hierarchical clustering analysis. Voxels were grouped into a hierarchical tree based 

on the similarity of their feature weight profiles (the weights assigned by the voxel-wise 

encoding model to the 12 body-part and action-target features). This analysis was conducted 

separately over the data from our two video sets, using the group data. The analysis was 

restricted to the same set of voxels used in the k-means clustering analysis: voxels that were 

reliable across video sets and predicted well (rCV > 0 with q < 0.01 after FDR-correction) by the 

model when it was fit to the data from either video set. Next, we used MATLAB’s linkage 

function with the correlation distance metric to cluster voxels and then arrange them into a 

hierarchy based on the average distance between clusters. To determine the predominant 

division within this hierarchy, we examined the results at the point where the voxels branched 

into two clusters (Supplementary Figure 6). To determine the robustness of this clustering, we 

computed d-prime between the voxel groupings for video sets 1 and 2. To determine how 

similarly voxels were grouped by hierarchical clustering and k-means clustering, we computed 

d-prime between the voxel groupings for the two methods, within each video set.  

Additional analyses revealed that subsequent divisions found by the hierarchical clustering 

analysis formed clusters that were very small (e.g., 30 voxels or fewer), and thus this 

supplemental analysis was not pursued further.  

 

Models Based on Motion Features. The effects of low-level motion features were not 
investigated in-depth in this study. It is likely that motion plays an important role in action 
processing2,3. However, prior work has found that motion models such as motion energy4 are 
only effective at capturing brain activity when subjects are required to maintain central fixation. 
When they view videos in a naturalistic fashion, moving their eyes around the frame as in the 
current study, this model breaks down unless neuroimaging is coupled with eye-tracking4,5. 
Further, our use of fMRI makes it challenging to collect measurements at the fine temporal scale 
at which motion features vary in our short video clips. Therefore, a combination of eye-tracking 
and fast fMRI sampling would be necessary to understand the how motion features contribute to 
the large-scale organization of action processing in the brain.  
 

Relating Motion Span and Interaction Envelope. The span of motion present in each action 

video was measured in two ways. First, human raters (N = 182) completed an online experiment 

on Amazon Mechanical Turk, in which they watched each video and then answered the 

question, “How much movement does this action or activity involve for the average person?” 

using a 1 to 5 scale. Second, optical flow was calculated for every frame in the videos using the 

Horn-Schunck algorithm, implemented in MATLAB6. The proportion of pixels that contained 

movement (average optical flow magnitude > 0.01) was then calculated for each video. To 

relate these measures of movement to neural tuning patterns, we first obtained the overall 

neural response to each video for each of the five networks, averaging across all voxels in each 

network. Next, we calculated each network’s motion sensitivity using a weighted average 

measure (i.e. for each network, the beta estimate for each video was multiplied by that video’s 

motion span; these products were then summed together and divided by the total number of 

videos). Motion sensitivity is therefore an average response across all the videos, weighted by 

the amount of movement in each video. Each network’s motion sensitivity was calculated 

separately for the two types of movement measurements (human ratings and optical flow; 

Supplementary Figure 8). This analysis was done separately for the two video sets.   
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Sociality and Transitivity Analysis. To compare our data to results reported in Wurm et al. 

(2017)7, we searched for regions that were preferentially tuned to sociality (directed at a person) 

or transitivity (directed at an object). To do so, we fit a separate encoding model based on the 

raw, un-PC’d action target feature matrix. Then, in each voxel we compared the magnitude of 

the weight assigned to object targets with the weight assigned to person targets. Voxels were 

colored orange if the object weight was larger and pink if the person weight was larger. 

Saturation reflects the size of the difference between the weights (Supplementary Figure 9). 
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Supplementary Figure 1: Principle Components Analysis of Body Part and Action Target 
Feature Spaces. Visualization of the (A) body parts and (B) action target features after being 
reduced via Principle Components Analysis. Each feature (individual body part or action target) 
is colored according to the principle component’s loading on that feature. Percentages indicate 
percent variance in the feature ratings explained by each component. Icons used to depict body 
part and target features were custom-made or based on images purchased from the Noun 
Project (Creative Commons License CC BY 3.0, https://creativecommons.org/licenses/by/3.0/), 
which were then colored and arranged by the authors. (C) Relationships between the Principle 
Components features, measured using Pearson’s correlation.   

https://creativecommons.org/licenses/by/3.0/
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Supplementary Figure 2: Voxel-wise Reliability in Individual Subjects. Split-half reliability 

maps are shown for each subject. Subjects are ordered according to the number of voxels that 

survived the reliability-based inclusion threshold (split-half r > 0.30, which was an appropriate 

threshold for all subjects, as well as in the group data). All brain figures were created by the 

authors.  
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Supplementary Figure 3: Comparing 5-Network Solution Across Stimulus Sets. Results 

are shown for video set 1 (left) and set 2 (right). (A) K-means clustering was performed at every 

k from 2 to 20 (x-axis), and the resulting cluster centroid similarities (measured as the average 

(blue) and maximum (orange) correlation between the centers of every cluster) are plotted. (B) 

The 5-network structure is displayed for each video set. The match between the voxel 

assignments was computed using d-prime. (C) The feature tuning profile is shown for each 

cluster. Tuning profiles were compared across video sets using Pearson’s correlation. Icons 

used to depict body part and target features were custom-made or based on images purchased 

from the Noun Project (Creative Commons License CC BY 3.0, 

https://creativecommons.org/licenses/by/3.0/), which were then colored and arranged by the 

authors. All brain figures were created by the authors. 

https://creativecommons.org/licenses/by/3.0/
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Supplementary Figure 4: Model Performance and Large-Scale Structure in Individual 

Subjects. Prediction performance for the action-target-body-part model and large-scale 

clustering of the model weights into five clusters are shown for each subject. For clustering 

results displayed on the brain, voxels are colored according to a common colormap: all voxels in 

a cluster are shown in the same color, and clusters with similar tuning profiles are shown in 

similar colors. In addition, each cluster’s tuning profile is displayed to show which features the 

clusters are sensitive to. For each subject, we also list the median cross-validated prediction 

performance (r) and d-prime comparing how voxels were grouped in the single-subject and 

group data. All results are based on the data from video set 1. Subjects are ordered according 

to the number of voxels that survived the reliability threshold in their data (see Supplementary 

Figure 2). All single-subject analyses were conducted in the voxels used in the group analysis, 

though reliable coverage within these voxels differed across subjects. Figure continues for 

Subjects 5-13 on the next two pages. Icons used to depict body part and target features were 

custom-made or based on images purchased from the Noun Project (Creative Commons 

License CC BY 3.0, https://creativecommons.org/licenses/by/3.0/), which were then colored and 

arranged by the authors. All brain figures were created by the authors. 

  

https://creativecommons.org/licenses/by/3.0/
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Supplementary Figure 5: The Emergence of Five Large-Scale Networks. Clustering 

solutions are shown at k = 2, 3, 4, and 5 clusters for (A) video set 1 and (B) video set 2. D-prime 

values indicate the correspondence between how voxels were clustered across the video sets. 

Icons used to depict body part and target features were custom-made or based on images 

purchased from the Noun Project (Creative Commons License CC BY 3.0, 

https://creativecommons.org/licenses/by/3.0/), which were then colored and arranged by the 

authors. All brain figures were created by the authors. 

https://creativecommons.org/licenses/by/3.0/
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Supplementary Figure 6: Hierarchical Clustering of Voxel-wise Feature Tuning. Results of 
hierarchically clustering voxels into 2 clusters based on their feature tuning are shown for (A) 
video set 1 and (B) video set 2. The feature tuning profile (the average tuning across all voxels 
in the cluster) is shown for each cluster. D-prime value indicates the correspondence between 
how voxels were clustered across the video sets. The voxels were grouped similarly using this 
method compared to k-means clustering at k = 2 (Supplementary Figure 5; d-prime across 
clustering methods = 1.6 (set 1) & 0.6 (set 2)). Icons used to depict body part and target 
features were custom-made or based on images purchased from the Noun Project (Creative 
Commons License CC BY 3.0, https://creativecommons.org/licenses/by/3.0/), which were then 
colored and arranged by the authors. All brain figures were created by the authors.   

https://creativecommons.org/licenses/by/3.0/
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Supplementary Figure 7: Comparing Feature-Based and Feature-Free Clustering 

Analyses. Feature-free and feature-based clustering solutions were compared at a range of 

possible numbers of clusters (k-values) using d-prime. This was done separately for each video 

set.  
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Supplementary Figure 8: Relating Interaction Envelope and Motion Span. Sensitivity to the 

span of motion in the action videos is plotted for the five action sub-networks. Motion Sensitivity 

was calculated as each network’s average response over the action videos, weighted by the 

motion span apparent in each video (N = 60 videos). Blue bars depict motion sensitivity in video 

set 1 based on human ratings of how much the average actor moves to complete each action. 

Orange bars depict motion sensitivity in video set 1 based on the proportion of pixels in the 

video’s frame containing movement during the course of the video, measured by optical flow. 

Error bars indicate the standard error of the mean, across 60 videos. Grey dots indicate the 

same values for video set 2 (N = 60 videos).  
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Supplementary Figure 9: Sociality and Transitivity (alternate feature spaces). Two-way 

preference map showing regions more related to person targets (“social” analog) or object 

targets (“transitive” analog). Voxels are colored according to the feature with the highest weight 

of the two possible targets: pink for person > object, orange for object > person. Color saturation 

reflects the strength of the voxel’s preference (person weight – object weight). Icons used to 

depict person and object targets were custom-made or based on images purchased from the 

Noun Project (Creative Commons License CC BY 3.0, 

https://creativecommons.org/licenses/by/3.0/), which were then colored and arranged by the 

authors. All brain figures were created by the authors. 

 

 

https://creativecommons.org/licenses/by/3.0/

